Artin–Schreier extensions and Galois module structure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY FOR EMBEDDABLE CYCLIC EXTENSIONS OF DEGREE p

Let p > 2 be prime, and let n,m ∈ N be given. For cyclic extensions E/F of degree p that contain a primitive pth root of unity, we show that the associated Fp[Gal(E/F )]-modules H(GE , μp) have a sparse decomposition. When E/F is additionally a subextension of a cyclic, degree p extension E/F , we give a more refined Fp[Gal(E/F )]-decomposition of H (GE , μp).

متن کامل

Galois Module Structure of Galois Cohomology

Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...

متن کامل

Nontrivial Galois Module Structure of . . .

We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...

متن کامل

Scaffolds and integral Hopf Galois module structure on purely inseparable extensions

Let p be prime. Let L/K be a finite, totally ramified, purely inseparable extension of local fields, [L : K] = p, n ≥ 2. It is known that L/K is Hopf Galois for numerous Hopf algebras H, each of which can act on the extension in numerous ways. For a certain collection of such H we construct “Hopf Galois scaffolds” which allow us to obtain a Hopf analogue to the Normal Basis Theorem for L/K. The...

متن کامل

GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF EXTENSIONS OF DEGREE p

For fields F of characteristic not p containing a primitive pth root of unity, we determine the Galois module structure of the group of pth-power classes of K for all cyclic extensions K/F of degree p. The foundation of the study of the maximal p-extensions of fields K containing a primitive pth root of unity is a group of the pth-power classes of the field: by Kummer theory this group describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2003

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(03)00083-0